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Abstract
We investigate the one-dimensional diffusion of a particle in a V-shaped
potential combined with a time-dependent jump at the tip. Employing
the matching conditions, we calculate the exact Green function of the
corresponding Smoluchowski equation. We then specialize the analysis to a
harmonically oscillating height of the potential discontinuity. We calculate the
particle’s mean position as a function of time and study its nonlinear features.
Our analysis reveals a new type of stochastic resonance. Namely, the time-
asymptotic amplitude of the mean-position oscillations exhibits a maximum at
an optimal value of the V-potential slope.

PACS numbers: 02.50.Ey, 05.10.Gg, 05.40.Jc, 05.45.−a

1. Introduction

Diffusion over barriers is an interesting problem of great importance in a variety of fields such
as physics, chemistry and engineering [1]. In recent years, the topic has been reactivated in
connection with the analysis of periodically driven stochastic systems [2]. A rich variety of
new effects has been analysed, the phenomenon of stochastic resonance [3] and the study of
Brownian motors [4] being perhaps the most popular examples.

In a paradigmatic setting, consider a particle which diffuses in a potential well and which
is driven by an external harmonic force. The mean position of the particle can be viewed as
a nonlinear transformation of the input signal. However, having a time-dependent potential,
the corresponding dynamical equation cannot be solved in closed form. One has to invoke
an appropriate approximation, e.g. the weak-signal assumption, or one has to impose some
restrictions on the external-signal frequency. In the present paper, the external driving will
be mimicked by a special device which still allows for an exact analysis. Namely, we shall
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introduce a schematic potential which at a given space point has a step with time-dependent
height. Differently speaking, the diffusing particle encounters at that point a semi-permeable
boundary with externally controlled time-dependent permeability.

2. Exact Green function

To begin with, assume an overdamped Brownian test particle that moves in a general time-
dependent potential. In the Brownian-motion-type notation, the Smoluchowski equation for
the Green function G(x, y; t) reads

∂

∂t
G(x, y; t) = − ∂

∂x

{
−D

∂

∂x
G(x, y; t) − 1

�

[
∂U(x; t)

∂x

]
G(x, y; t)

}
. (1)

Here U(x; t) is the (time dependent) potential, i.e. F(x; t) = − ∂
∂x

U(x, t) is the corresponding
force. The curly-bracketed expression represents the probability current J (x, y; t). � equals
the particle mass times the viscous friction coefficient. The thermal-noise strength parameter
D increases linearly with the temperature, D = kBT /�. The initial conditions are imposed at
the time t0 = 0, i.e. limt→0+ G(x, y; t) = δ(x − y). We assume natural boundary conditions
limx→±∞ G(x, y; t) = 0.

As a preparatory step, consider the time-independent V-shaped potential U(0)(x) = Fa|x|,
with a non-negative, i.e. ‘attracting’, force Fa � 0. In this case, one possible method
to calculate the relevant Green function, say G(0)(x, y; t), proceeds through Laplace-
transforming the Smoluchowski equation and then solving the emerging ordinary differential
equation. This step is performed separately in the two constant-force regions. Thereupon, one
employs the matching conditions which guarantee the continuity of the probability density
and of the probability current [5, 6]. Skipping details, the solution of the preparatory problem
reads

G(0)(x, y; t) = �(xy)

2
√

πDt
exp

[
− (|x| − |y| + 2αDt)2

4Dt

]

+
�(−xy)

2
√

πDt
exp(−2α|x|) exp

[
− (|x| + |y| − 2αDt)2

4Dt

]

+
α

2
exp(−2α|x|) erfc

( |x| + |y| − 2αDt

2
√

Dt

)
. (2)

Here the parameter α = Fa/(2kBT ) � 0 represents the temperature-reduced attractive force,
erfc(x) = 1 − erf(x) is the complementary error function [7], and �(x) is the Heaviside
unit-step function.

We now turn our attention to the central problem of the present work. We shall
combine the potential from the preceding ‘unperturbed’ problem with the time-dependent jump
at the origin. Thus the particle diffuses in the time-dependent potential U(x; t) = Fa|x| +
Uj(t)�(x), where the function Uj(t) controls the height of the step. Presently, the matching-
conditions method meets a principal difficulty. The jump condition for the probability density
assumes the form [6] G(−ε, y; t) = ξ(t)G(ε, y; t), where ξ(t) = exp[Uj(t)/(kBT )], and ε is
a positive infinitesimal quantity. The condition cannot be easily Laplace-transformed and the
whole calculation must be performed with the time variable. We now leave off a considerable
amount of computational subtleties and focus on the final result. The exact Green function for
the present problem reads

G(x, y; t) = G(0)(x, y; t) −
∫ t

0
dt ′V (x; t − t ′)R(t ′)W(y; t ′) (3)
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Figure 1. Time- and space-dependence of the exact Green function. Parameters used are α = 1.0,

κ = 5.0, ω = π , and D = 1, in appropriate units. The initial condition y = 2 is indicated by the
arrow.

where G(0)(x, y; t) is the unperturbed Green function (2) and we have introduced the following
three auxiliary functions:

V (x; t) = x

4Dt
√

πDt
exp

[
− (|x| + 2αDt)2

4Dt

]
(4)

R(t) = 2
1 − exp[Uj(t)/(kBT )]

1 + exp[Uj(t)/(kBT )]
(5)

W(y; t) = α

2
erfc

( |y| − 2αDt

2
√

Dt

)
+

1√
πDt

exp

[
− (|y| − 2αDt)2

4Dt

]
. (6)

Equations (3)–(6) close up the general part of the paper. Of course, by assuming the V-shaped
unperturbed potential, the concept of the time-dependent discontinuity has already been
incorporated into a specific context. As a matter of fact, our method works with arbitrary
shapes of (solvable) potentials at the two sides of the discontinuity.

From this point on we will be even more specific and presume harmonic oscillations of
the step height. More precisely, we put Uj(t) = Ua cos(ωt), where Ua � 0 is the amplitude of
the input signal and ω its frequency. Substituting into equation (5), there emerges an important
parameter, κ = Ua/(kBT ). It measures the temperature-reduced amplitude of the step and
can be regarded as a perturbation parameter. If κ � 1, one anticipates a highly nonlinear
response. Figure 1 is a plot of the resulting Green function as calculated from the expressions
(3)–(6), where presently R(t) = −2 tanh

[
κ
2 cos(ωt)

]
.

In the adiabatic limit ω → 0, the formulae (3)–(6) describe the diffusion in the V-shaped
potential superimposed with the time-independent jump at the tip. In this case, one arrives
at the well-known picture: the time-asymptotic probability density for the particle’s position
represents the Boltzmann equilibrium state, πeq(x) ≈ exp {− [Fa|x| + Ua�(x)] /(kBT )}, and
the equilibrium mean-position is shifted to the left from the origin, µeq = −tanh(κ/2)/(2α).
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Figure 2. Time-dependence of the particle’s mean position for several combinations of the
parameters α and κ . The calculation is based on equations (7) and (8) (the exact results) and (9)
(the linear-response regime). Other parameters used are ω = 2π and D = 1.0, in appropriate
units. The initial condition was y = 0.5.

However, having a nonzero driving frequency, i.e. a true time-dependent discontinuity, the
dynamics cannot establish a time-independent equilibrium. Instead, the time-asymptotic
solution describes a stationary regime in which the probability density flows to the left (to the
right) during each half period when Uj(t) > 0(Uj (t) < 0).

3. Mean position

We now proceed to discuss the particle’s mean position µ(y; t) = ∫ ∞
−∞ dx xG(x, y; t). Using

equation (3), we can split the expression as µ(y; t) = µ(0)(y; t) + µ(1)(y; t), where the first
summand refers to the unperturbed case, and the second one shows up a time-convolution
structure. After carrying out the space integrations, the final expressions read

µ(0)(y; t) = y − y

|y|2αDt + αy
√

D

∫ t

0
dt ′

t − t ′

t ′
√

πt ′
exp

[
− (|y| − 2αDt ′)2

4Dt ′

]
(7)

µ(1)(y; t) = D

∫ t

0
dt ′

[
(1 + 2α2Dt ′) erfc(α

√
Dt ′) − 2α

√
Dt ′

π
e−α2Dt ′

]
R(t − t ′)W(y; t − t ′)

(8)

where the functions R(t) and W(y; t) have been introduced in equations (5) and (6). These
results are illustrated in figure 2.

In order to analyse the spectral composition of the output signal, we have performed the
standard asymptotic analysis [8] based on the Laplace-transformed mean coordinate µ(y; z).
In the time-asymptotic region, the unperturbed part (7) vanishes and the function (8) loses
its dependence on the initial condition. The time-asymptotic output signal µs(t) contains the
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Figure 3. The linear-response amplitude as a function of the driving frequency and the potential
slope. In the adiabatic limit ω → 0, the amplitude is simply A(1)(0, Fa) = Ua/(2Fa). In the
calculation, we took Ua = 0.01, and D = 0.05, in appropriate units.

fundamental frequency and its odd harmonics. More precisely, introducing ωk = (2k − 1)ω,
we have obtained

µs(t) = 1

α

∞∑
k=1

rk(κ)

(
ρ−

k

)2
+

(
ρ+

k

)2

2�2
k

cos

[
ωkt − arctg

2ρ−
k ρ+

k(
ρ−

k

)2 − (
ρ+

k

)2

]
(9)

where �k = ωk/(Dα2) is the dimensionless frequency, ρ−
k = [(

�2
k + 1

)1/2 − 1
]1/2

and

ρ+
k = [(

�2
k + 1

)1/2
+ 1

]1/2 − √
2. The amplitude of the kth harmonics depends on the input-

signal amplitude through the function rk(κ). The κ-expansion of the function rk(κ) begins
with the power κ2k−1. For example, one can show r1(κ) = −κ + κ3/16 − κ5/192 + · · · ,
r2(κ) = κ3/48 − κ5/384 + · · ·, etc.

Let us now focus on the linear-response regime. We keep just the first term of the series
(9) and we approximate r1(κ) ≈ −κ therein. Consequently, the response is harmonic at the
fundamental frequency ω—cf the dotted line in figure 2. A scrutiny of the linear-response
amplitude, say A(1)(ω, Fa), reveals an interesting feature which is illustrated in figure 3. The
amplitude exhibits a maximum for a specific value of the attracting force Fa . Note there is no
resonance in the standard sense, the amplitude being a monotonously decreasing function of
the driving frequency. Similarly, there is no maximum of the amplitude as a function of the
thermal-noise intensity D.

The physical essence behind the resonance is the following. Assume first a sharp slope of
the unperturbed potential. Due to the large attractive force, the particle cannot migrate far from
the origin and the amplitude of its mean-position oscillations is small. Secondly, assume a flat
minimum of the unperturbed potential. Then the particle performs relatively large excursions
from the origin. However, the excursions occur symmetrically to the both sides from the origin
and hence they do not contribute to the mean position. Only a small portion of the probability
density in the vicinity of the origin is non-symmetrically affected by the oscillating barrier.
On the whole, the amplitude of the particle’s mean position is again small. In conclusion,
there must exist an ‘optimal’ slope Fa,res for which the amplitude assumes its maximal value.
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4. Discussion

To sum up, in the present paper, the price paid for the exact solution has been a somewhat
simplified implementation of the external driving. Having assumed the sudden jump of
the potential at the origin, the force in equation (1) exhibits a δ-function singularity. One
encounters the well-known problem with an interpretation of the product δ(x)G(x, y; t).
Our way of treating the potential step is effectively equivalent to accepting the Stratonovich
interpretation [1] of the above product. Differently speaking, the step is considered as a
limiting case of a continuous potential which undergoes an abrupt change in the domain
(−,). The limit  → 0 is implicitly assumed as being the last limit in the calculations.

The principal motivation for the present work has been connected with the hysteresis
phenomenon [9, 10]. Hysteresis is the nonlinear and time-delayed response of a system to
the harmonic variation of a control parameter, a familiar example being changes in electric
displacement in response to a electric field in graded ferroelectrics [11]. Using the Landau
representation of the free energy, the phenomenon can be modelled as the overdamped
dynamics of a particle in a bistable asymmetric potential. It is important that the driving
force cannot be assumed to be small. In our setting, the external probe is the step-hight
function Us(t) and the response corresponds to the particle mean position µ(y; t). Except of
the double-well shaped unperturbed potential, our approach includes all the pertinent aspects
of the above problem. An analogous analysis of the diffusion dynamics in an asymmetric
W-shaped potential superimposed with the time-dependent discontinuity at the central-tip
coordinate is in progress and it will be reported elsewhere. In this case, we expect that the
calculation would predict the experimentally observed driving-induced shift of the hysteresis
loop [11] as well as an authentic stochastic resonance [3], i.e. a maximum of the mean-position
amplitude as a function of the noise intensity.
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[4] Schimansky-Geier L and Pöschel T (ed) 1997 Stochastic Dynamics (Lecture Notes in Physics vol 484) (Berlin:

Springer)
[5] Risken H 1984 The Fokker–Planck Equation: Methods of Solution and Applications (Berlin: Springer)
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